ELECTRONIC DESIGN \& ENGINEERING

ACTIVE FILTER AF08

1 Description

The AF08 modules are multi-stage active filters with a Sallen-Key low-pass structure to permit limiting the signal band width. Their main application is as anti-aliasing filters for analogue/digital converters.

In standard design, the modules are laid out as:

- switchable filters with 4 stages $100-200-500-1000 \mathrm{~Hz}(-3 \mathrm{~dB})$,
- with Butterworth characteristic,
- optimised for high output swing and
- equipped with low-power precision operational amplifiers.

There are a number of equipping variants:

- fixed cut-off frequency filter or
- switchable filters in 2-3-4 stages in the 4th or 8th order in each case, with
- Butterworth or Bessel characteristic,
- optimised for low noise or high output swing.

Because of the low calculation and component selection effort, modules with only one frequency or with a lower order number can be produced at a somewhat lower price than the fully equipped variants.

In the case of the switchable filters, the filter frequency can be switched either via

- the DIP switch on the module or
- remotely via a microcontroller or external mechanical switches (see variants on P.5).

The most practical ratio of frequencies for the switchable filter variants is about 1:10.
In other words, frequencies of between 100 Hz and 1 kHz or 1 kHz and 10 kHz can be realised without problem.
Higher ratios can only be realised with certain restrictions in terms of quality, because the same capacitors are used for all stages (see 1st block schematic), and it is only the relevant resistances that are switched via CMOS switches.

It must be ensured thereby that the resistances

- are not too low because of the output load of the internal resistance of the semiconductor switch and
- also not too high because of the increasing noise (and also offset) at high resistance values.

Dimensioning of the filter values is dictated by the application. For maximum output swing, the stage with the highest efficiency is placed at the end of the chain (e.g. at the 8th pole) and for minimum noise at the beginning of the chain (the 1st pole).

Over and above this, correct selection of the operational amplifier makes it possible to optimise the application range of the AF08 module further in terms of

- high AC performance, e.g. for acoustic applications, or
- low power consumption for battery operation, or
- high DC precision for strain gauge amplifiers, etc.

For applications where up to 4 channels (or 8 with two housings flanged together) are sufficient, a mainboard including power supply for 4 modules is available for installation in a housing.
The width of the mainboard corresponds to the standard dimension 100mm (Euro-size board).

ELECTRONIC DESIGN \& ENGINEERING

ACTIVE FILTER AF08

2 AF08 block diagram with the switchable filter frequencies

Shown here is the first pole of the Sallen-Key filter circuit with the CMOS switch for switching the frequency-determining resistances.

3 Equipping variants: fixed-frequency or switchable filter

4 Filter frequency set-up:

DIP switch module	Switch	1	2	3	$F_{\text {cut-Off }}[\mathrm{Hz}]$	
		on	on	on	2000	Settings
		on	on	Off	1000	switchable filters
		on	Off	on	500	
		on	off	Off	200	Examples for frequency specs
		Off	Off	Off	remote control	

ACTIVE FILTER AF08

5 Filter curves: cut-off frequencies - group delay times
Blue curve: amplitude gradient plotted over frequency
Black curve: group delay time plotted over frequency
Red line: cut-off frequency (-3dB)

ACTIVE FILTER AF08

ACTIVE FILTER AF08

6 Mainboard and housing

ACTIVE FILTER AF08

ELECTRONIC DESIGN \& ENGINEERING

ACTIVE FILTER AF08

7 Mainboard pin assignment for four AF08 V2 filters

Option remote control - microcontroller GND ENABLE
A1
A0
Frequency select. - rotary switch centre
Frequency select. - rotary switch pin 4
Frequency select. - rotary switch pin 3
Frequency select. - rotary switch pin 2
Frequency select. - rotary switch pin 1

LED - (no current-limiting
LED + resistors required)
PWR - (- supply)
PWR + (+ supply)

8 Technical specifications of the AF08 module

Power supply: ± 12 to 15 VDC
Gain:
R input:
R output:
V signal max.:
V offset:
Remote control:
Operating temperature:
Dimensions:
Pin row raster: Height of retaining pins:

Hole dimension for retaining pins: x-direction 6 mm from 7-pin pin row, y-direction centred for M2.5 screw
$\mathrm{G}=+1$
47 kOhm
51 Ohm
± 10 VAC
$< \pm 2 \mathrm{mVDC}$ (dependent on the operational amplifier assembly)
TTL level (Enable, A0, A1)
-20 to $+85^{\circ} \mathrm{C}$
$48 \times 22 \times 15[\mathrm{~mm}]$ length x width x height (installation height above mainboard)
$18 / 10^{"}=45.72 \mathrm{~mm}$, pin spacing $1 / 10 "=2.54 \mathrm{~mm}$ 10.5 mm ($10 \mathrm{~mm}+\mathrm{M} 2.5$ washer)

9 Technical specifications of mainboard and housing

Power supply:
Power consumption:
I/O insulation:
Input reverse polarity protection:
Status display:
Plug-in connectors:
Mainboard dimensions:
Housing dimensions:
Operating temperature:

9-18VDC or 18-36VDC, or 9-36VDC via banana jacks (red: +V, black: -V) approx. 100 mA @12 VDC (dependent on the op amp assembly) 1500 VDC (onBoard DC/DC converter) 400 VDC / 1A max.
LED on +15 V and -15 V (series resistors $2 \times 3.3 \mathrm{kOhm}$ on mainboard)
Signal input and output per BNC 50 Ohm (insulated installation)
$100 \times 70 \times 27$ [mm] length x width x height 4 mounting holes spaced at 93×63 [mm] for M3 screws $105 \times 108 \times 43$ [mm] length x width \times height (without mounting plates, without plug-in connectors) -20 to $+85^{\circ} \mathrm{C}$

